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DIFFRACTION OF KELVIN WAVES AT THE OPEN END OF A 
PLANE-PARALLEL CHANNEL + 

A. I. PLIS and V. I. PLIS 

The Wiener-Hopf method is used for solving the problem of surface wave diffraction 
at the end of a plane parallel channel in a tank rotating at constant velocity. 
Asymptotic and numerical analysis of the obtained solution is carried out. 

1, Statement of the problem, Let us consider an infinite tank of finite depth h 
rotating counterclockwise at angular velocity 0. Two semi-infinite vertical walls are fix- 
ed to the tank bottom. The system of coordinates in which the equations of walls arey = +a, 
x<O, where 2a is the channelwidth,is shown in Fig-l. 

We consider in this tank a harmonic wave motion of the fluid surface whose elevation can 
be represented in the form &(x, y)exp(- iot), where u is the frequency of these oscillations. 
Let usconsiderthe case of 0>20. In the theory of long surface waves /l/ function 5(x, y) 

is the solution of the wave equation 
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.F where g is the acceleration of gravity. 
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Let the unit amplitude Kelvin wave 

Fig.1 E0 (z, y) = exp liqxx - lqx (y - a)1 
(2 = 20 / IJ, q = (1 - zy- I/.) 

(1.1) 

propagate from infinity in region y> a, x<O along the channel semi-infinite wall. Owing 
to the diffraction of wave (1.1) at the wall edge, waves which differ from go are generated 
in the tank. We investigate these waves below. 

We divide the tank in three regions, as shown in Fig.1. The total elevation amplitude 
in region 1 (y>a) is defined by & + &, where go and E1 are, respectively, the incident and 
diffracted wave amplitudes. In regions 2 (1~1 <a) and 3 (y < - a) the elevation amplitudes 
are denoted by 5, and Es, respectively. For the unknown functions &(j = 1,2,3) we have the 
boundary value problem of finding the solution of equations 

( s&+6 + ~2)%j(z~Y)=o (1.2) 

that would satisfy the boundary conditions at the channel walls and the conditions of continu- 
ity of the y-components of velocities and elevations along the extension lines of walls 

v0 (5, a + 0) + uI (5, a + 0) = 0 (1.3) 

vZ(x, la-Ol)=O,v,(x,-a-O)=0 (z(O) 

u. (5, a + 0) + h (5, a + 0) = 4 (x, a - 0) 

vz (I, - a + 0) = us (2, - a - 0) 

E. (x, a + 0) + E1 (x, a + 0) = Ez (x, a - 0) 

E2 (x, - a -t 0) = E3 (x9-- a - 0) (5 > 0) 

where v,(x, y) is the fluid velocity component parallel to the y-axis, which is related to 
5,(x, y) by the formula 

Vj(X, Y)=-$(z$+ i&)%i(I* Y) (1.4) 

Finally, the diffracted waves must satisfy in the neighborhood of point s=O,y=+a 
the "condition at the edge" 

Ej.-fla (j= 1, 2, 3), r= Vz” + (Yh4a (1.5) 

and the condition 
es. 

of radiation at infinity, viz. the solution must only contain divergent wav- 

It can be shown that in the class of bounded functions the problem (1.1)- (1.5) has a 
unique solution. 

2, The system of paired integral equations and its sOlutiOnO We shall 
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solve problem (l.l)-- (1.5) using the Wiener-Hopf method /2/. For this we assume that the 
wave number K has a small positive imaginary part, i.e. x = xg + ie, and in the final results 
make E approach zero. The introduction in x of the imaginary component conforms with the 
assumption that the fluid absorbs the energy of wave motions. 

We introduce the unknown function z,(a), z, (a), z,'(a), z,(a), A (a) and B (a) of the 
complex variable CC by formulas 

(2.1) 

Lb Yf = f tA(u)sinY(y -I- 4 + ~(a)s~ny(~ - ~)]exp(~~~) 6%~ 
-.-LX 

82 (2, a - 0) = *r 2% (a) exp (iar) da 
-m 

E?(z, - a + O)=+f &‘(a) exp(iaz)du 

where y = i/x” is the branch of the root such that XnZy>O. These functions are ob- 
viously not independent, since 

A(a)= $$, B(a)=-- _z; 
sul2ya 

Let us calculate the y-components of fluid velocity in regions 1 and 3, and introduce 
new unkn0w.n functions V,(a) and V, (a) using formulas 

+m 

The following relations are valid: 

Applying formula (1.4) to function &(z,~) and using the condition of continuity 
ities on the half-lines jy / = a, r>o, we obtain for Z,(a) and Z,‘(a) the following 
entations in terms ofY% (CC) and V,(a): 

(2.2) 

of veloc- 
repres- 

&(a)=[ v,(a)(al sin 2yn --yCOS Zya) -c yV,(a) 
(v* +a*1Z)sin2ya 

Zi (a) = i 
- yVl(n) -t (y cos2ya + alsin 2ya)C',(u) 

(~~+c#) sin 2ya 

Substituting the integral. representations of elevations into the last four of boundary 
conditions (l-3), adding and subtracting these, we obtain the following integral equationsthat 
are valid for s> 0: 

+? exp (ia k-,(u) L (a) da _ 

s 

a 
us - rp4 -w exp (iv=) 

(2.3) _u 

+e= exp (ia+) v, (u) M (a) s a” - qw da= -i+exp(iqxz) 
--m 

I;, (4 = (VI (a) - F3 (a)) f 2, fi, (a) = (VI (a) -!- V3 (a)) I 2 

L (a) = fly exp (- iyo) 
iI4 (a) = q exp (-- iv) 

cosya ’ sinya 

Using the integral representation for velocities (2.2) and the first three of boundary 
conditions (1.3) we obtain the following integral equations that are valid for z<o: 

+a i-m 

f 
V,(a) exp jiaz) da = 0, j ~=(a)exp(~a~)~a= 0 

(2.4) 

..-a -cs 
The input problem (l.l)- (1.5) has been, thus, reduced to solving the system of paired 

integral equations (2.3) and (2.4) for the unknown functions V,(a) and Vd (a) of the complex 
variable a:. 

To solve the system (2.X), (2.4) we factorize the kernels of integral equations L(a) and 
M(a) by representing these in the form L(a) = L+(a)L_(a) and M(a) = M+(a)M_(a),. where the 
factors with the signs plus and minus are analytic in the upper and lower half-planes of the 
complex variable a, respectively, and have no zeros there. 

Since the factorization of kernels Z,(a) and M(a) had been described in numerous publica- 
tions /3/, we present here only the final result of that procedure 
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where C is Euler's constant, 
We seek a solution of system (2.31, (2.4) of the form 

(2.5) 

where I? and Q are unknown constants. With this selection of functions V,(a) and V,(a) Eqs. 
(2.4) are identically satisfied. For the determination of constants P and Qwe substitute 
(2.5) into the integral equations (2.3) and, after the computation of residues in the pole 
a T= nx, obtain 

The derived solution (2.5), (2.6) satisfies condition (1.5) at the edge which in conformity 
with the theorem on the relation between the function asymptotics and its Fourier transform 
in the case of functions V,(a) and V,(a) assumes the form V, (a), V, (a) - u-‘~~, as a.-+m. 
The determination of functions V,(a) and F'=(o) together with functions 

Vl(a)=V.(a)-vV,(aj=~-~ M_ (a) 

completely solves the problem of determination of fluid elevation in all regions of the tank. 

3, Formulas for elevations, We start with the determination of elevations in 
region 2 at ~(0, i.e. inside the channel. Using (2.1) it is possible to obtain for eleva- 
tions in that region the following integral representation: 

(3.1) 

where the integral can be readily calculated using Jordan's lemma and obtain the residues of 
integrands at simple poles 

a0 = - qx, 

AS the result, we obtain 

52(5, y)= - 2nzq VI (-W) -Vv,(-qrlx)exp(-Zq114) x 
1 -eexp(-4lqxa) 

eq[-- iqxx-t lqx(y- a)] + 

(3.2) 

The first term in (3.2) defines the Kelvin wave propagating in the channel and the in- 
finite sum corresponds to progressing and damped waves, with the real al, corresponding to 
progressing waves, and the imaginary one waves that are exponentially damped inside the chan- 
nel with increasing distance from its open end. For a given dimensionless width xa of the 
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Fig.2 

channel the number of progressing waves is equal to the integral part 

of the number 2xai x. 
The following integral representation is valid for region 3: 

(3.3) 

For x<O it is possible to use the theorem on residues (the in- 

tegration path in the a-plane is shown in Fig.2) and represent eleva- 

tions E3(~,y) in the form 

(3.4) 

where the first term defines the Kelvin wave that propagates in region 3 in the negative direc- 

tion of the r-axis along the wall y= -a, and the second term, the integral along the edges 

of slit S (see Fig.21, defines the complex wave motion, which for any point of the considered 

region can be obtained by numerical integration on a computer. 

Integral (3.3) for surface elevations at distances from the entry to the channel that are 

considerable compared with the wave length is estimated using the saddle-point method. For 

this we introduce polar coordinates r,O using formulas 

2'= rsine, y+a=-rcos8, lOI<+ 

The evaluation of the integral for E3(r,y) by the saddle-point method yields for the fluid 

elevation at considerable distance the following expression: 
- 

~(r,e)-~~s(e)exP[i(xr-_)] 
(3.5) 

xr > 1, 6 (e) = ;o;y;cJ;i;~ 

It can be shown that for xr >I the elevation in regions 1 and 3 is defined by a similar form- 

ula. Formula (3.5) shows that at large distances from the channel entry the elevations in the 

channel are of the form of divergent damped cylindrical waves with the angular distibution of 

amplitude l@(e) 1. 

4, Propagation of the Kelvin wave from the channel, Let a Kelvin wave of unit 
amplitude 

E0 (x, y) = exp liqxr - lqx (y + a)1 
(4.1) 

propagate along the channel wall y _ --a, x< 0 in the positive direction of the x-axis in 

the tank shown inFig.1. 

The problem of diffraction of such wave at the channel open end is solved by using the 

method expounded in Sects.1 and 2 which yields two systems of paired integral equations 

+m 

s 
IrO(a)exp(iar)da=O, x<O (4.2) 

-m 

1 V.(a)exp(iaz)da=O, s<O 
-m 
+m 

s 
Vsca$@$;;ciar) da=~ch(lrlxa)exp(i?~z--qrlxa), z>O 

-_ 

where the notation conforms to that in Sects.1 and 2. The factorization method is used for 
solving system (4.2) with the unknown functions assumed to be of the form 

V, (cc) = F / L_ (a), V, (cc) = G / M_(a) (4.3) 

The constants F and G prove to be 

F= m 
bW+ (W 

[I - exp(- 2Zgxa)] (4.4) 

G= tirl$+((t,x) 11 .I- erP (- 2lrlxa)l 

The obtained functions V,(a) and Vc(a) completely solve the problem of diffraction of 
the Kelvin wave propagating from the channel into the tank. 
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The investigation of the fluid wave motions is carried out as described in Sect.3. Let 
us briefly define the field of wave elevations. A Kelvin wave reflected from the channel open 
end propagates in it in the negative direction of the x-axis, in which also propagate progres- 
sing waves (whose number is equal to the integral part of number 2xa/n) and an infinite number 
of damped waves. Finally, the fluid elevations in all three regions at considerable distances 
from the channel inlet have the formof divergent damped cylindrical waves.Formulas (3.2),(3.4) 
and (3.5) determine the amplitudes of two Kelvins' progressive, damped and cylindrical waves. 
.In this case the functions V,(a)and V,(a) in these formulas are calculated from formulas (2.71, 
taken into account (4.3) and (4.4). 
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5, Interpretation of results of numerical analysis, The dependence of Kelvin 
wave amplitudes on the channel width xa is shown in Fig.3 in the case when the initial wave 
propagates in region 1, while Fig.4 shows the same dependence in the case of the Kelvin wave 
issuing from the channel (the part of curve shown by the dash line is represented in a logari- 
thmic scale). In each of these cases two Kelvin waves exist for any %(I. It will be seenthat 
for small %a the Kelvin wave, after reaching the channel open end, is almost competely reflect 
from it, while in the first with the same xo the amplitudes of both diffracted Kelvin waves 
are of comparable magnitude. As the "channel width* is increased for xcr=nnlZ(n=l,Z,...), 
progressing waves are generated. In Figs.3 and 4 the characteristic kinks at points xa=nn/2 
correspond to the emergence of progressing waves associated with the rearrangement of the 
amplitudes of the surface wave motions at the generation of a new progressing wave. 
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The described physical effect is characteristic not only for hydrodynamics but, also,for 

electrodynamics /4/ and nuclear physics /5/, and is called the threshold effect. 

The dependence of the first progressing wave amplitudes on the channel width xa is shown 

in Fig.5 in the case, when the initial wave propagates in region 1. 

Since there are two independent sets of progressing waves in the channel, which differ in their 

symmetry properties, generation of a progressing wave of a particular symmetry leads to the 

rearrangement of the spectrum of waves of that symmetry only. This state can be examined in 

Fig.5. 
Note that the results of investigation /6/ represent a particular case of the derived 

here solution. 

The authors thank S. Ia. Sekerzh- Zen'kovich and S. A. Gabov for discussing the results 

of this investigation. 
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